- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bacmeister, Julio T. (1)
-
Brady, Esther C. (1)
-
Gettelman, Andrew (1)
-
Kay, Jennifer E. (1)
-
McGraw, Zachary (1)
-
McGraw, Zachary S. (1)
-
Neale, Richard B. (1)
-
Otto‐Bliesner, Bette L. (1)
-
Polvani, Lorenzo_M (1)
-
Poulsen, Christopher J. (1)
-
Shaw, Jonah K. (1)
-
Zhu, Jiang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Volcanic aerosols reduce global mean precipitation in the years after major eruptions, yet the mechanisms that produce this response have not been rigorously identified. Volcanic aerosols alter the atmosphere's energy balance, with precipitation changes being one pathway by which the atmosphere acts to return toward equilibrium. By examining the atmosphere's energy budget in climate model simulations using radiative kernels, we explain the global precipitation reduction as largely a consequence of Earth's surface cooling in response to volcanic aerosols reflecting incoming sunlight. These aerosols also directly add energy to the atmosphere by absorbing outgoing longwave radiation, which is a major cause of precipitation decline in the first post‐eruption year. We additionally identify factors limiting the post‐eruption precipitation decline, and provide evidence that our results are robust across climate models.more » « less
-
Zhu, Jiang; Otto‐Bliesner, Bette L.; Brady, Esther C.; Gettelman, Andrew; Bacmeister, Julio T.; Neale, Richard B.; Poulsen, Christopher J.; Shaw, Jonah K.; McGraw, Zachary S.; Kay, Jennifer E. (, Journal of Advances in Modeling Earth Systems)Abstract The Community Earth System Model version 2 (CESM2) simulates a high equilibrium climate sensitivity (ECS > 5°C) and a Last Glacial Maximum (LGM) that is substantially colder than proxy temperatures. In this study, we examine the role of cloud parameterizations in simulating the LGM cooling in CESM2. Through substituting different versions of cloud schemes in the atmosphere model, we attribute the excessive LGM cooling to the new CESM2 schemes of cloud microphysics and ice nucleation. Further exploration suggests that removing an inappropriate limiter on cloud ice number (NoNimax) and decreasing the time‐step size (substepping) in cloud microphysics largely eliminate the excessive LGM cooling. NoNimax produces a more physically consistent treatment of mixed‐phase clouds, which leads to an increase in cloud ice content and a weaker shortwave cloud feedback over mid‐to‐high latitudes and the Southern Hemisphere subtropics. Microphysical substepping further weakens the shortwave cloud feedback. Based on NoNimax and microphysical substepping, we have developed a paleoclimate‐calibrated CESM2 (PaleoCalibr), which simulates well the observed twentieth century warming and spatial characteristics of key cloud and climate variables. PaleoCalibr has a lower ECS (∼4°C) and a 20% weaker aerosol‐cloud interaction than CESM2. PaleoCalibr represents a physically more consistent treatment of cloud microphysics than CESM2 and is a valuable tool in climate change studies, especially when a large climate forcing is involved. Our study highlights the unique value of paleoclimate constraints in informing the cloud parameterizations and ultimately the future climate projection.more » « less
An official website of the United States government
